MATH4800 - FALL '23 - SUGGESTED EXERCISES 1

Problem 1. Show that Ω is a compact set with the metric $d(x, y) = 2^{-N(x,y)}$, where

 $N(x, y) = \max \left\{ n \in \mathbb{Z} : x_k = y_k \text{ for all } k \le n \right\}.$

Problem 2. Let $f: X \to X$ be a dynamical system. Show that an point is periodic if and only if it is finite. If x is a periodic point, show that the set $S(x) = \{n \in \mathbb{Z} : f^n(x) = x\}$ is equal to $p\mathbb{Z}$ for a unique p > 0. Describe the periodic orbits of σ on Ω .

Problem 3. Let A be a 0-1 square $n \times n$ matrix. Show that Ω_A is closed by showing that $\Omega \setminus \Omega_A$ is open.

Problem 4. Find matrices A such that:

- (1) Ω_A is empty
- (2) Ω_A is finite
- (3) Ω_A is countable but not finite
- (4) Ω_A is uncountable

and justify your answer, or prove that no such matrix exists.

Problem 5. Fix the alphabet $\mathcal{A} = \{1, 2, 3\}$. Find the transition matrix A whose corresponding subshift Ω_A is described by the following:

- (1) the sum of adjacent letters in the word is always odd
- (2) the product of adjancent letters in the word is always even
- (3) the letters 1 and 2 are always followed by larger letters

Problem 6 (Hard). If $\mathcal{A} = \{1, 2, ..., n\}$ is any alphabet and ℓ is any positive integer, define a new alphabet \mathcal{A}_2 to be all words of length 2 in \mathcal{A} . Embed the full shift on \mathcal{A} into the shift on \mathcal{A}_2 as a shift-invariant subset, and show that it is Ω_A for some $n^2 \times n^2$ matrix \mathcal{A} . Show that the subshift which has rules involving the admissibility or banning of words of length at most 3 can always be realized as a subshift which allows or bans words of length 2 by increasing the alphabet size.

A subset Ω which bans certain words of a given, bounded length is called a *subshift of finite type*.

Problem 7 (Hard). Find an example of a closed, σ -invariant subset of Ω which is not a subshift of finite type, and prove it is not a subshift of finite type. [*Hint*: Try to find a condition on words in Ω which cannot be detected by looking at finite strings at a time. Remember, a key difficult will be showing the closed property.]